Vektorisierung der Skalarproduktberechnung mit SSE4

Vektorisierung der Skalarproduktberechnung mit SSE4


Ich versuche, diesen Code mit dem SSE4-Punktprodukt zu verbessern, aber es fällt mir schwer, eine Lösung zu finden. Diese Funktion erhält die Parameter qi und tj, die Float-Arrays mit jeweils 80 Zellen enthalten, und berechnet dann das Skalarprodukt. Der Rückgabewert ist ein Vektor mit vier Skalarprodukten. Ich versuche also, vier Punktprodukte von zwanzig Werten parallel zu berechnen.


Haben Sie eine Idee, wie Sie diesen Code verbessern können?


inline __m128 ScalarProd20Vec(__m128* qi, __m128* tj)
{
__m128 res=_mm_add_ps(_mm_mul_ps(tj[0],qi[0]),_mm_mul_ps(tj[1],qi[1]));
res=_mm_add_ps(res,_mm_add_ps(_mm_mul_ps(tj[2],qi[2]),_mm_mul_ps(tj[3],qi[3])));
res=_mm_add_ps(res,_mm_add_ps(_mm_mul_ps(tj[4],qi[4]),_mm_mul_ps(tj[5],qi[5])));
res=_mm_add_ps(res,_mm_add_ps(_mm_mul_ps(tj[6],qi[6]),_mm_mul_ps(tj[7],qi[7])));
res=_mm_add_ps(res,_mm_add_ps(_mm_mul_ps(tj[8],qi[8]),_mm_mul_ps(tj[9],qi[9])));
res=_mm_add_ps(res,_mm_add_ps(_mm_mul_ps(tj[10],qi[10]),_mm_mul_ps(tj[11],qi[11])));
res=_mm_add_ps(res,_mm_add_ps(_mm_mul_ps(tj[12],qi[12]),_mm_mul_ps(tj[13],qi[13])));
res=_mm_add_ps(res,_mm_add_ps(_mm_mul_ps(tj[14],qi[14]),_mm_mul_ps(tj[15],qi[15])));
res=_mm_add_ps(res,_mm_add_ps(_mm_mul_ps(tj[16],qi[16]),_mm_mul_ps(tj[17],qi[17])));
res=_mm_add_ps(res,_mm_add_ps(_mm_mul_ps(tj[18],qi[18]),_mm_mul_ps(tj[19],qi[19])));
return res;
}

Antworten:


Von den Hunderten von SSE-Beispielen, die ich auf SO gesehen habe, ist Ihr Code einer der wenigen, der bereits von Anfang an in ziemlich guter Form ist. Sie benötigen die SSE4-Dot-Product-Anweisung nicht. (Du kannst es besser!)


Es gibt jedoch eine Sache, die Sie ausprobieren können: (Ich sage versuchen, weil ich es noch nicht getimet habe.)


Derzeit haben Sie eine Datenabhängigkeitskette auf res . Die Vektoraddition beträgt heute auf den meisten Maschinen 3-4 Zyklen. Ihr Code benötigt also mindestens 30 Zyklen, um ausgeführt zu werden, da Sie Folgendes haben:


(10 additions on critical path) * (3 cycles addps latency) = 30 cycles

Was Sie tun können, ist, die res in Knoten aufzuteilen Variable wie folgt:


__m128 res0 = _mm_add_ps(_mm_mul_ps(tj[ 0],qi[ 0]),_mm_mul_ps(tj[ 1],qi[ 1]));
__m128 res1 = _mm_add_ps(_mm_mul_ps(tj[ 2],qi[ 2]),_mm_mul_ps(tj[ 3],qi[ 3]));
res0 = _mm_add_ps(res0,_mm_add_ps(_mm_mul_ps(tj[ 4],qi[ 4]),_mm_mul_ps(tj[ 5],qi[ 5])));
res1 = _mm_add_ps(res1,_mm_add_ps(_mm_mul_ps(tj[ 6],qi[ 6]),_mm_mul_ps(tj[ 7],qi[ 7])));
res0 = _mm_add_ps(res0,_mm_add_ps(_mm_mul_ps(tj[ 8],qi[ 8]),_mm_mul_ps(tj[ 9],qi[ 9])));
res1 = _mm_add_ps(res1,_mm_add_ps(_mm_mul_ps(tj[10],qi[10]),_mm_mul_ps(tj[11],qi[11])));
res0 = _mm_add_ps(res0,_mm_add_ps(_mm_mul_ps(tj[12],qi[12]),_mm_mul_ps(tj[13],qi[13])));
res1 = _mm_add_ps(res1,_mm_add_ps(_mm_mul_ps(tj[14],qi[14]),_mm_mul_ps(tj[15],qi[15])));
res0 = _mm_add_ps(res0,_mm_add_ps(_mm_mul_ps(tj[16],qi[16]),_mm_mul_ps(tj[17],qi[17])));
res1 = _mm_add_ps(res1,_mm_add_ps(_mm_mul_ps(tj[18],qi[18]),_mm_mul_ps(tj[19],qi[19])));
return _mm_add_ps(res0,res1);

Dies halbiert Ihren kritischen Pfad fast. Beachten Sie, dass diese Optimierung wegen der Nicht-Assoziativität von Gleitkommazahlen für Compiler illegal ist.



Hier ist eine alternative Version mit 4-Wege-Node-Splitting und AMD FMA4-Anweisungen. Wenn Sie die Fused-Multiply-Adds nicht verwenden können, können Sie sie gerne aufteilen. Es könnte immer noch besser sein als die erste Version oben.


__m128 res0 = _mm_mul_ps(tj[ 0],qi[ 0]);
__m128 res1 = _mm_mul_ps(tj[ 1],qi[ 1]);
__m128 res2 = _mm_mul_ps(tj[ 2],qi[ 2]);
__m128 res3 = _mm_mul_ps(tj[ 3],qi[ 3]);
res0 = _mm_macc_ps(tj[ 4],qi[ 4],res0);
res1 = _mm_macc_ps(tj[ 5],qi[ 5],res1);
res2 = _mm_macc_ps(tj[ 6],qi[ 6],res2);
res3 = _mm_macc_ps(tj[ 7],qi[ 7],res3);
res0 = _mm_macc_ps(tj[ 8],qi[ 8],res0);
res1 = _mm_macc_ps(tj[ 9],qi[ 9],res1);
res2 = _mm_macc_ps(tj[10],qi[10],res2);
res3 = _mm_macc_ps(tj[11],qi[11],res3);
res0 = _mm_macc_ps(tj[12],qi[12],res0);
res1 = _mm_macc_ps(tj[13],qi[13],res1);
res2 = _mm_macc_ps(tj[14],qi[14],res2);
res3 = _mm_macc_ps(tj[15],qi[15],res3);
res0 = _mm_macc_ps(tj[16],qi[16],res0);
res1 = _mm_macc_ps(tj[17],qi[17],res1);
res2 = _mm_macc_ps(tj[18],qi[18],res2);
res3 = _mm_macc_ps(tj[19],qi[19],res3);
res0 = _mm_add_ps(res0,res1);
res2 = _mm_add_ps(res2,res3);
return _mm_add_ps(res0,res2);