So erstellen Sie eine Permutation in C ++ mit STL für eine Anzahl von Stellen, die kleiner als die Gesamtlänge sind

So erstellen Sie eine Permutation in C ++ mit STL für eine Anzahl von Stellen, die kleiner als die Gesamtlänge sind

Sie könnten 2 Schleifen verwenden:

  • Nehmen Sie jedes n-Tupel
  • Permutationen dieses n-Tupels durchlaufen
template <typename F, typename T>
void permutation(F f, std::vector<T> v, std::size_t n)
{
    std::vector<bool> bs(v.size() - n, false);
    bs.resize(v.size(), true);
    std::sort(v.begin(), v.end());

    do {
        std::vector<T> sub;
        for (std::size_t i = 0; i != bs.size(); ++i) {
            if (bs[i]) {
                sub.push_back(v[i]);
            }
        }
        do {
            f(sub);
        }
        while (std::next_permutation(sub.begin(), sub.end()));
    } while (std::next_permutation(bs.begin(), bs.end()));
}

Demo


Wenn die Effizienz nicht das Hauptanliegen ist, können wir alle Permutationen durchlaufen und diejenigen überspringen, die sich in einem Suffix unterscheiden, indem wir nur jeden (N - k)! auswählen -ten. Zum Beispiel für N = 4, k = 2 , haben wir Permutationen:

12 34 <
12 43
13 24 <
13 42
14 23 <
14 32
21 34 <
21 43
23 14 <
23 41
24 13 <
24 31
...

wo ich zur Verdeutlichung ein Leerzeichen eingefügt und jeden (N-k)! = 2! = 2 markiert habe -nd Permutation mit < .

std::size_t fact(std::size_t n) {
    std::size_t f = 1;
    while (n > 0)
        f *= n--;
    return f;
}

template<class It, class Fn>
void generate_permutations(It first, It last, std::size_t k, Fn fn) {
    assert(std::is_sorted(first, last));

    const std::size_t size = static_cast<std::size_t>(last - first);
    assert(k <= size);

    const std::size_t m = fact(size - k);
    std::size_t i = 0;
    do {
        if (i++ == 0)
            fn(first, first + k);
        i %= m;
    }
    while (std::next_permutation(first, last));
}

int main() {
    std::vector<int> vec{1, 2, 3, 4};
    generate_permutations(vec.begin(), vec.end(), 2, [](auto first, auto last) {
        for (; first != last; ++first)
            std::cout << *first;
        std::cout << ' ';
    });
}

Ausgabe:

12 13 14 21 23 24 31 32 34 41 42 43

Hier ist ein effizienter Algorithmus, der std::next_permutation nicht verwendet direkt, sondern nutzt die Arbeitspferde dieser Funktion. Das heißt std::swap und std::reverse . Als Pluspunkt ist es in lexikografischer Reihenfolge.

#include <iostream>
#include <vector>
#include <algorithm>

void nextPartialPerm(std::vector<int> &z, int n1, int m1) {

    int p1 = m1 + 1;

    while (p1 <= n1 && z[m1] >= z[p1])
        ++p1;

    if (p1 <= n1) {
        std::swap(z[p1], z[m1]);
    } else {
        std::reverse(z.begin() + m1 + 1, z.end());
        p1 = m1;

        while (z[p1 + 1] <= z[p1])
            --p1;

        int p2 = n1;

        while (z[p2] <= z[p1])
            --p2;

        std::swap(z[p1], z[p2]);
        std::reverse(z.begin() + p1 + 1, z.end());
    }
}

Und wenn wir es nennen, haben wir:

int main() {
    std::vector<int> z = {1, 2, 3, 4, 5, 6, 7};
    int m = 3;
    int n = z.size();

    const int nMinusK = n - m;
    int numPerms = 1;

    for (int i = n; i > nMinusK; --i)
        numPerms *= i;

    --numPerms;

    for (int i = 0; i < numPerms; ++i) {
        for (int j = 0; j < m; ++j)
            std::cout << z[j] << ' ';

        std::cout << std::endl;
        nextPartialPerm(z, n - 1, m - 1);
    }

    // Print last permutation
    for (int j = 0; j < m; ++j)
            std::cout << z[j] << ' ';

    std::cout << std::endl;

    return 0;
}

Hier ist die Ausgabe:

1 2 3 
1 2 4 
1 2 5 
1 2 6 
1 2 7
.
.
.
7 5 6 
7 6 1 
7 6 2 
7 6 3 
7 6 4 
7 6 5

Hier ist lauffähiger Code von ideone